Syngas

Syngas, or synthesis gas, is a fuel gas mixture consisting primarily of hydrogen, carbon monoxide, and very often some carbon dioxide. The name comes from its use as intermediates in creating synthetic natural gas (SNG) and for producing ammonia or methanol. Syngas is usually a product of coal gasification and the main application is electricity generation. Syngas is combustible and can be used as a fuel of internal combustion engines. Historically, syngas has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII (in Germany alone half a million cars were built or rebuilt to run on wood gas). Syngas, however, has less than half the energy density of natural gas.
The chemical composition of syngas varies based on the raw materials and the processes. Syngas produced by coal gasification generally is a mixture of 30 to 60% carbon monoxide, 25 to 30% hydrogen, 5 to 15% carbon dioxide, and 0 to 5% methane. It also contains lesser amount of other gases.
Conversion of biomass to syngas is typically low-yield. The University of Minnesota developed a metal catalyst that reduces the biomass reaction time by up to a factor of 100. The catalyst can be operated at atmospheric pressure and reduces char. The entire process is autothermic and therefore heating is not required. Another process has been developed at DTU Energy which is efficient and does not have any issues of fouling of the catalyst (in this case a cerium oxide catalyst).
CO2 can be split into CO and then combined with hydrogen to form syngas. A method for production of carbon monoxide from carbon dioxide by treating it with microwave radiation is being examined by the solar fuels-project of the Dutch Institute For Fundamental Energy Research. This technique was alleged to have been used during the Cold war in Russian nuclear submarines to allow them to get rid of CO2 gas without leaving a bubble trail. Publicly available journals published during the Cold War indicate that American submarines used conventional chemical scrubbers to remove CO2. Documents released after the sinking of the Kursk, a Cold War era Oscar-class submarine, indicate that potassium superoxide scrubbers were used to remove carbon dioxide on that vessel.
Heat generated by concentrated solar power may be used to drive thermochemical reactions to split carbon dioxide to carbon monoxide or to make hydrogen. Natural gas may be used as a feedstock in a facility that integrates concentrated solar power with a power plant fueled by natural gas augmented by syngas while the sun is shining. The Sunshine-to-Petrol project has developed a device allowing for efficient production using this technique. It is called the Counter-Rotating Ring Receiver Reactor Recuperator, or CR5.
Electricity generated from renewable sources is also used to process carbon dioxide and water into syngas through the high-temperature electrolysis. This is an attempt to maintain carbon neutral in the generation process. Audi, in partnership with company named Sunfire, opened a pilot plant in November 2014 to generate e-diesel using this process.
Coal gasification processes to create syngas were used for many years to manufacture illuminating gas (coal gas) for gas lighting, cooking and to some extent, heating, before electric lighting and the natural gas infrastructure became widely available. The syngas produced in waste-to-energy gasification facilities can be used to generate electricity.